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1 Review of Set Theory

1.1. Venn diagram is very useful in set theory. It is often used
to portray relationships between sets. Many identities can be read
out simply by examining Venn diagrams.

Example 1.2. Let Ω = {1, 2, 3, 4, 5, 6}

1.3. If ω is a member of a set A, we write ω ∈ A.

Definition 1.4. Basic set operations (set algebra)

• Complementation: Ac = {ω : ω /∈ A}.

• Union: A ∪B = {ω : ω ∈ A or ω ∈ B}

◦ Here “or”is inclusive; i.e., if ω ∈ A, we permit ω to belong
either to A or to B or to both.

• Intersection: A ∩B = {ω : ω ∈ A and ω ∈ B}

◦ Hence, ω ∈ A if and only if ω belongs to both A and B.

◦ A ∩B is sometimes written simply as AB.

• The set difference operation is defined by B \A = B ∩Ac.

◦ B \ A is the set of ω ∈ B that do not belong to A.

◦ When A ⊂ B, B \A is called the complement of A in B.

2



1.5. Basic Set Identities:

• Idempotence: (Ac)c = A

• Commutativity (symmetry):

A ∪B = B ∪ A , A ∩B = B ∩ A

• Associativity:

◦ A ∩ (B ∩ C) = (A ∩B) ∩ C
◦ A ∪ (B ∪ C) = (A ∪B) ∪ C

• Distributivity

◦ A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

◦ A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

• de Morgan laws

◦ (A ∪B)c = Ac ∩Bc

◦ (A ∩B)c = Ac ∪Bc

1.6. Disjoint Sets:

• Sets A and B are said to be disjoint (A ⊥ B) if and only if
A ∩B = ∅. (They do not share member(s).)

• A collection of sets (Ai : i ∈ I) is said to be pairwise dis-
joint or mutually exclusive [1, p. 9] if and only if Ai∩Aj = ∅
when i 6= j.

Example 1.7. Sets A, B, and C are pairwise disjoint if

1.8. For a set of sets, to avoid the repeated use of the word “set”,
we will call it a collection/class/family of sets.
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Definition 1.9. Given a set S, a collection Π = (Aα : α ∈ I) of
subsets1 of S is said to be a partition of S if

(a) S =
⋃
Aα∈I and

(b) For all i 6= j, Ai ⊥ Aj (pairwise disjoint).

Remarks:

• The subsets Aα, α ∈ I are called the parts of the partition.

• A part of a partition may be empty, but usually there is no
advantage in considering partitions with one or more empty
parts.

Example 1.10 (Slide:maps).

Example 1.11. Let E be the set of students taking ET601

Definition 1.12. The cardinality (or size) of a collection or set
A, denoted |A|, is the number of elements of the collection. This
number may be finite or infinite.

• A finite set is a set that has a finite number of elements.

• A set that is not finite is called infinite.

• Countable sets:
1In this case, the subsets are indexed or labeled by α taking values in an index or label

set I
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◦ Empty set and finite sets are automatically countable.

◦ An infinite set A is said to be countable if the elements
of A can be enumerated or listed in a sequence: a1, a2, . . . .

• A singleton is a set with exactly one element.

◦ Ex. {1.5}, {.8}, {π}.
◦ Caution: Be sure you understand the difference between

the outcome -8 and the event {−8}, which is the set con-
sisting of the single outcome −8.

1.13. We can categorize sets according to their cardinality:

Example 1.14. Examples of countably infinite sets:

• the set N = {1, 2, 3, . . . } of natural numbers,

• the set {2k : k ∈ N} of all even numbers,

• the set {2k − 1 : k ∈ N} of all odd numbers,

• the set Z of integers,
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Set Theory Probability Theory
Set Event

Universal set Sample Space (Ω)
Element Outcome (ω)

Table 1: The terminology of set theory and probability theory

Event Language
A A occurs
Ac A does not occur

A ∪B Either A or B occur
A ∩B Both A and B occur

Table 2: Event Language

Example 1.15. Example of uncountable sets2:

• R = (−∞,∞)

• interval [0, 1]

• interval (0, 1]

• (2, 3) ∪ [5, 7)

Definition 1.16. Probability theory renames some of the termi-
nology in set theory. See Table 1 and Table 2.

• Sometimes, ω’s are called states, and Ω is called the state
space.

1.17. Because of the mathematics required to determine proba-
bilities, probabilistic methods are divided into two distinct types,
discrete and continuous. A discrete approach is used when the
number of experimental outcomes is finite (or infinite but count-
able). A continuous approach is used when the outcomes are con-
tinuous (and therefore infinite). It will be important to keep in
mind which case is under consideration since otherwise, certain
paradoxes may result.

2For those who are curious, we may use a technique called (Cantor’s) diagonal argu-
ment (also called the diagonalisation argument, the diagonal slash argument or the diagonal
method) to prove that a set is not countable and hence uncountable.
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2 Probability Foundations

Constructing the mathematical foundations of probability theory
has proven to be a long-lasting process of trial and error. The
approach consisting of defining probabilities as relative frequencies
in cases of repeatable experiments leads to an unsatisfactory theory.
The frequency view of probability has a long history that goes
back to Aristotle. It was not until 1933 that the great Russian
mathematician A. N. Kolmogorov (1903-1987) laid a satisfactory
mathematical foundation of probability theory. He did this by
taking a number of axioms as his starting point, as had been done
in other fields of mathematics. [7, p 223]

We will try to avoid several technical details3 4 in this class.
Therefore, the definition given below is not the “complete” defini-
tion. Some parts are modified or omitted to make the definition
easier to understand.

3To study formal definition of probability, we start with the probability space (Ω,A, P ).
Let Ω be an arbitrary space or set of points ω. Recall that, viewed probabilistically, a subset
of Ω is an event and an element ω of Ω is a sample point . Each event is a collection of
outcomes which are elements of the sample space Ω.

The theory of probability focuses on collections of events, called event σ-algebras, typ-
ically denoted by A (or F), that contain all the events of interest (regarding the random
experiment E) to us, and are such that we have knowledge of their likelihood of occurrence.
The probability P itself is defined as a number in the range [0, 1] associated with each event
in A.

4The class 2Ω of all subsets can be too large for us to define probability measures with
consistency, across all member of the class. (There is no problem when Ω is countable.)
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Definition 2.1. Kolmogorov’s Axioms for Probability [3]: A
probability measure5 is a real-valued set function6 that satisfies

P1 Nonnegativity :
P (A) ≥ 0.

P2 Unit normalization :

P (Ω) = 1.

P3 Countable additivity or σ-additivity : For every countable
sequence (An)

∞
n=1 of disjoint events,

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P (An).

• The number P (A) is called the probability of the event A

• The entire sample space Ω is called the sure event or the
certain event.

• If an event A satisfies P (A) = 1, we say that A is an almost-
sure event.

• A support of P is any set A for which P (A) = 1.

From the three axioms7, we can derive many more properties
of probability measure. These properties are useful for calculating
probabilities.

5Technically, probability measure is defined on a σ-algebra A of Ω. The triple (Ω,A, P ) is
called a probability measure space , or simply a probability space

6A real-valued set function is a function the maps sets to real numbers.
7Remark: The axioms do not determine probabilities; the probabilities are assigned based

on our knowledge of the system under study. (For example, one approach is to base probability
assignments on the simple concept of equally likely outcomes.) The axioms enable us to easily
calculate the probabilities of some events from knowledge of the probabilities of other events.
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2.2. P (∅) = 0.

2.3. Finite additivity8: If A1, . . . , An are disjoint events, then

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai).

Special case when n = 2: Addition rule (Additivity)

If A ∩B = ∅, then P (A ∪B) = P (A) + P (B). (1)

8It is not possible to go backwards and use finite additivity to derive countable additivity
(P3).
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2.4. The probability of a finite or countable event equals the sum
of the probabilities of the outcomes in the event.

(a) In particular, if A is countable, e.g. A = {a1, a2, . . .}, then

P (A) =
∞∑
n=1

P ({an}).

(b) Similarly, if A is finite, e.g. A =
{
a1, a2, . . . , a|A|

}
, then

P (A) =

|A|∑
n=1

P ({an}).

• This greatly simplifies9 construction of probability measure.

Remark: Note again that the set A under consideration here
is finite or countably infinite. You can not apply the properties
above to uncountable set.10

9 Recall that a probability measure P is a set function that assigns number (probability) to
all set (event) in A. When Ω is countable (finite or countably infinite), we may let A = 2Ω =
the power set of the sample space. In other words, in this situation, it is possible to assign
probability value to all subsets of Ω.

To define P , it seems that we need to specify a large number of values. Recall that to
define a function g(x) you usually specify (in words or as a formula) the value of g(x) at all
possible x in the domain of g. The same task must be done here because we have a function
that maps sets in A to real numbers (or, more specifically, the interval [0, 1]). It seems that
we will need to explicitly specify P (A) for each set A in A. Fortunately, 2.4 implies that we
only need to define P for all the singletons (when Ω is countable).

10In Section ??, we will start talking about (absolutely) continuous random variables. In
such setting, we have P ({α}) = 0 for any α. However, it is possible to have an uncountable
set A with P (A) > 0. This does not contradict the properties that we discussed in 2.4. If A
is finite or countably infinite, we can still write

P (A) =
∑
α∈A

P ({α}) =
∑
α∈A

0 = 0.

For event A that is uncountable, the properties in 2.4 are not enough to evaluate P (A).
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Example 2.5. A random experiment can result in one of the out-
comes {a, b, c, d} with probabilities 0.1, 0.3, 0.5, and 0.1, respec-
tively. Let A denote the event {a, b}, B the event {b, c, d}, and C
the event {d}.

• P (A) =

• P (B) =

• P (C) =

• P (Ac) =

• P (A ∩B) =

• P (A ∩ C) =

2.6. Monotonicity : If A ⊂ B, then P (A) ≤ P (B)

Example 2.7. Let A be the event to roll a 6 and B the event
to roll an even number. Whenever A occurs, B must also occur.
However, B can occur without A occurring if you roll 2 or 4.

2.8. If A ⊂ B, then P (B \ A) = P (B)− P (A)

2.9. P (A) ∈ [0, 1].

2.10. P (A∩B) can not exceed P (A) and P (B). In other words,
“the composition of two events is always less probable than (or at
most equally probable to) each individual event.”
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Example 2.11 (Slides). Experiments by psychologists Kahneman
and Tversky.

2.12. Complement Rule:

P (Ac) = 1− P (A) .

• “The probability that something does not occur can be com-
puted as one minus the probability that it does occur.”

• Named “probability’s Trick Number One” in [2]

2.13. Probability of a union (not necessarily disjoint):

P (A ∪B) = P (A) + P (B)− P (A ∩B)

• P (A ∪B) ≤ P (A) + P (B).

• Approximation: If P (A) � P (B) then we may approximate
P (A ∪B) by P (A).

Example 2.14 (Slides). Combining error probabilities from vari-
ous sources in DNA testing

Example 2.15. In his bestseller Innumeracy, John Allen Paulos
tells the story of how he once heard a local weatherman claim that
there was a 50% chance of rain on Saturday and a 50% chance of
rain on Sunday and thus a 100% chance of rain during the weekend.
Clearly absurd, but what is the error?

Answer: Faulty use of the addition rule (1)!
If we let A denote the event that it rains on Saturday and B

the event that it rains on Sunday, in order to use P (A ∪ B) =
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P (A)+P (B), we must first confirm that A and B cannot occur at
the same time (P (A∩B) = 0). More generally, the formula that is
always holds regardless of whether P (A∩B) = 0 is given by 2.13:

P (A ∪B) = P (A) + P (B)− P (A ∩B).

The event “A∩B” describes the case in which it rains both days.
To get the probability of rain over the weekend, we now add 50%
and 50%, which gives 100%, but we must then subtract the prob-
ability that it rains both days. Whatever this is, it is certainly
more than 0 so we end up with something less than 100%, just like
common sense tells us that we should.

You may wonder what the weatherman would have said if the
chances of rain had been 75% each day. [6, p 12]

2.16. Probability of a union of three events:

P (A ∪B ∪ C) = P (A) + P (B) + P (C)

− P (A ∩B)− P (A ∩ C)− P (B ∩ C)

+ P (A ∩B ∩ C)

2.17. Two bounds:

(a) Subadditivity or Boole’s Inequality: If A1, . . . , An are
events, not necessarily disjoint, then

P

(
n⋃
i=1

Ai

)
≤

n∑
i=1

P (Ai).

(b) σ-subadditivity or countable subadditivity: If A1, A2,
. . . is a sequence of measurable sets, not necessarily disjoint,
then

P

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

P (Ai)

• This formula is known as the union bound in engineer-
ing.
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2.18. If a (finite) collection {B1, B2, . . . , Bn} is a partition of Ω,
then

P (A) =
n∑
i=1

P (A ∩Bi)

Similarly, if a (countable) collection {B1, B2, . . .} is a partition
of Ω, then

P (A) =
∞∑
i=1

P (A ∩Bi)

2.19. Connection to classical probability theory: Consider an
experiment with finite sample space Ω = {ω1, ω2, . . . , ωn} in which
each outcome ωi is equally likely. Note that n = |Ω|.

We must have

P ({ωi}) =
1

n
, ∀i.

Now, given any event finite11 event A, we can apply 2.4 to get

P (A) =
∑
ω∈A

P ({ω}) =
∑
ω∈A

1

n
=
|A|
n

=
|A|
|Ω|

.

We can then say that the probability theory we are working on
right now is an extension of the classical probability theory. When
the conditons/assumptions of classical probability theory are met,
then we get back the defining definition of classical classical prob-
ability. The extended part gives us ways to deal with situation
where assumptions of classical probability theory are not satisfied.

11In classical probability, the sample space is finite; therefore, any event is also finite.
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3 Event-based Independence and Conditional

Probability

Example 3.1 (Slides). Diagnostic Tests.

3.1 Event-based Conditional Probability

Definition 3.2. Conditional Probability : The conditional prob-
ability P (A|B) of event A, given that event B 6= ∅ occurred, is
given by

P (A|B) =
P (A ∩B)

P (B)
. (2)

• Some ways to say12 or express the conditional probability,
P (A|B), are:

◦ the “probability of A, given B”

◦ the “probability of A, knowing B”

◦ the “probability of A happening, knowing B has already
occurred”

• Defined only when P (B) > 0.

◦ If P (B) = 0, then it is illogical to speak of P (A|B); that
is P (A|B) is not defined.

3.3. Interpretation : Sometimes, we refer to P (A) as

• a priori probability , or

• the prior probability of A, or

• the unconditional probability of A.

It is sometimes useful to interpret P (A) as our knowledge of
the occurrence of event A before the experiment takes place. Con-
ditional probability P (A|B) is the updated probability of the

12Note also that although the symbol P (A|B) itself is practical, it phrasing in words can be
so unwieldy that in practice, less formal descriptions are used. For example, we refer to “the
probability that a tested-positive person has the disease” instead of saying “the conditional
probability that a randomly chosen person has the disease given that the test for this person
returns positive result.”
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event A given that we now know that B occurred (but we still do
not know which particular outcome in the set B occurred).

Example 3.4. In diagnostic tests Example 3.1, we learn whether
we have the disease from test result. Originally, before taking the
test, the probability of having the disease is 0.01%. Being tested
positive from the 99%-accurate test updates the probability of
having the disease to about 1%.

More specifically, let D be the event that the testee has the
disease and TP be the event that the test returns positive result.

• Before taking the test, the probability of having the disease
is P (D) = 0.01%.

• Using 99%-accurate test means

P (TP |D) = 0.99 and P (T cP |Dc) = 0.99.

• Our calculation shows that P (D|TP ) ≈ 0.01.

3.5. “Prelude” to the concept of “independence”:
If the occurrence of B does not give you more information about
A, then

P (A|B) = P (A) (3)

and we say that A and B are independent .

• Meaning: “learning that eventB has occurred does not change
the probability that event A occurs.”

We will soon define “independence” in Section 3.2. Property
(3) can be regarded as a “practical” definition for independence.
However, there are some “technical” issues13 that we need to deal
with when we actually define independence.

13Here, the statement assume P (B) > 0 because it considers P (A|B). The concept of
independence to be defined in Section 3.2 will not rely directly on conditional probability and
therefore it will include the case where P (B) = 0.
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3.6. Similar properties to the three probability axioms:

(a) Nonnegativity: P (A|B) ≥ 0

(b) Unit normalization: P (Ω|B) = 1.

In fact, for any event A such that B ⊂ A, we have P (A|B) =
1.

This implies
P (Ω|B) = P (B|B) = 1.

(c) Countable additivity: For every countable sequence (An)
∞
n=1

of disjoint events,

P

( ∞⋃
n=1

An

∣∣∣∣∣B
)

=
∞∑
n=1

P (An|B).

• In particular, if A1 ⊥ A2,

P (A1 ∪ A2 |B ) = P (A1 |B ) + P (A2 |B )

3.7. More Properties:

• P (A|Ω) = P (A)

• P (Ac|B) = 1− P (A|B)

• P (A ∩B|B) = P (A|B)

• P (A1 ∪ A2|B) = P (A1|B) + P (A2|B)− P (A1 ∩ A2|B).

• P (A ∩B) ≤ P (A|B)

17



3.8. When Ω is finite and all outcomes have equal probabilities,

P (A|B) =
P (A ∩B)

P (B)
=
|A ∩B| / |Ω|
|B| / |Ω|

=
|A ∩B|
|B|

.

This formula can be regarded as the classical version of conditional
probability.

Example 3.9. Someone has rolled a fair dice twice. You know
that one of the rolls turned up a face value of six. The probability
that the other roll turned up a six as well is 1

11 (not 1
6). [7, Example

8.1, p. 244]

3.10. Probability of compound events

(a) P (A ∩B) = P (A)P (B|A)

(b) P (A ∩B ∩ C) = P (A ∩B)× P (C|A ∩B)

(c) P (A ∩B ∩ C) = P (A)× P (B|A)× P (C|A ∩B)

When we have many sets intersected in the conditioned part, we
often use “,” instead of “∩”.

Example 3.11. Most people reason as follows to find the proba-
bility of getting two aces when two cards are selected at random
from an ordinary deck of cards:

(a) The probability of getting an ace on the first card is 4/52.

(b) Given that one ace is gone from the deck, the probability of
getting an ace on the second card is 3/51.

(c) The desired probability is therefore

4

52
× 3

51
.

[7, p 243]

Question: What about the unconditional probability P (B)?
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Example 3.12. You know that roughly 5% of all used cars have
been flood-damaged and estimate that 80% of such cars will later
develop serious engine problems, whereas only 10% of used cars
that are not flood-damaged develop the same problems. Of course,
no used car dealer worth his salt would let you know whether your
car has been flood damaged, so you must resort to probability
calculations. What is the probability that your car will later run
into trouble?

You might think about this problem in terms of proportions.

If you solved the problem in this way, congratulations. You
have just used the law of total probability.

3.13. Total Probability Theorem : If a (finite or infinitely)
countable collection of events {B1, B2, . . .} is a partition of Ω, then

P (A) =
∑
i

P (A|Bi)P (Bi). (4)

This is a formula14 for computing the probability of an event
that can occur in different ways.

3.14. Special case:

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc).

This gives exactly the same calculation as what we discussed in
Example 3.12.

14The tree diagram is useful for helping you understand the process. However, then the
number of possible cases is large (many Bi for the partition), drawing the tree diagram may
be too time-consuming and therefore you should also learn how to apply the total probability
theorem directly without the help of the tree diagram.
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Example 3.15. Continue from the “Diagnostic Tests” Example
3.1 and Example 3.4.

P (TP ) = P (TP ∩D) + P (TP ∩Dc)

= P (TP |D)P (D) + P (TP |Dc )P (Dc) .

For conciseness, we define

pd = P (D)

and
pTE = P (TP |Dc) = P (T cP |D).

Then,
P (TP ) = (1− pTE)pD + pTE(1− pD).

3.16. Bayes’ Theorem:

(a) Form 1:

P (B|A) = P (A|B)
P (B)

P (A)
.

(b) Form 2: If a (finite or infinitely) countable collection of events
{B1, B2, . . .} is a partition of Ω, then

P (Bk|A) = P (A|Bk)
P (Bk)

P (A)
=

P (A|Bk)P (Bk)∑
i P (A|Bi)P (Bi)

.

• Extremely useful for making inferences about phenomena that
cannot be observed directly.

• Sometimes, these inferences are described as “reasoning about
causes when we observe effects”.
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Example 3.17. Continue from the “Disease Testing” Examples
3.1, 3.4, and 3.15:

P (D |TP ) =
P (D ∩ TP )

P (TP )
=
P (TP |D )P (D)

P (TP )

=
(1− pTE)pD

(1− pTE)pD + pTE(1− pD)Effect of pTE

1

pTE = 1 – 0.99 = 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pTE = 1 – 0.9 = 0.1

pTE = 1 – 0.5 = 0.5

pD

P(
D
|
T
P
)

Figure 1: Probability P (D |TP ) that a person will have the disease given that
the test result is positive. The conditional probability is evaluated as a func-
tion of PD which tells how common the disease is. Thee values of test error
probability pTE are shown.

Example 3.18. Medical Diagnostic: Because a new medical pro-
cedure has been shown to be effective in the early detection of an
illness, a medical screening of the population is proposed. The
probability that the test correctly identifies someone with the ill-
ness as positive is 0.99, and the probability that the test correctly
identifies someone without the illness as negative is 0.95. The in-
cidence of the illness in the general population is 0.0001. You take
the test, and the result is positive. What is the probability that
you have the illness? [5, Ex. 2-37]
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Example 3.19. Bayesian networks are used on the Web sites of
high-technology manufacturers to allow customers to quickly di-
agnose problems with products. An oversimplified example is pre-
sented here.

A printer manufacturer obtained the following probabilities from
a database of test results. Printer failures are associated with three
types of problems: hardware, software, and other (such as connec-
tors), with probabilities 0.1, 0.6, and 0.3, respectively. The prob-
ability of a printer failure given a hardware problem is 0.9, given
a software problem is 0.2, and given any other type of problem is
0.5. If a customer enters the manufacturers Web site to diagnose
a printer failure, what is the most likely cause of the problem?

Let the events H, S, and O denote a hardware, software, or
other problem, respectively, and let F denote a printer failure.

Example 3.20 (Slides). Prosecutor’s Fallacy and the Murder of
Nicole Brown

3.21. In practice, here is how we use the total probability theorem
and Bayes’ theorem:

Usually, we work with a system, which of course has input and
output. There can be many possibilities for inputs and there can be
many possibilities for output. Normally, for deterministic system,
we may have a specification that tells what would be the output
given that a specific input is used. Intuitively, we may think of this
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as a table of mapping between input and output. For system with
random component(s), when a specific input is used, the output is
not unique. This mean we needs conditional probability to describe
the output (given an input). Of course, this conditional probability
can be different for different inputs.

We will assume that there are many cases that the input can
happen. The event that the ith case happens is denoted by Bi. We
assume that we consider all possible cases. Therefore, the union
of these Bi will automatically be Ω. If we also define the cases so
that they do not overlap, then the Bi partitions Ω.

Similarly, there are many cases that the output can happen.
The event that the jth case happens is depenoted by Aj. We
assume that the Aj also partitions Ω.

In this way, the system itself can be described by the condi-
tional probabilities of the form P (Aj|Bi). This replace the table
mentioned above as the specification of the system. Note that
even when this information is not available, we can still obtain an
approximation of the conditional probability by repeating trials of
inputting Bi in to the system to find the relative frequency of the
output Aj.

Now, when the system is used in actual situation. Different
input cases can happen with different probabilities. These are
described by the prior probabilities P (Bi). Combining this with
the conditional probabilities P (Aj|Bi) above, we can use the total
probability theorem to find the probability of occurrence for out-
put and, even more importantly, for someone who cannot directly
observe the input, Bayes’ theorem can be used to infer the value
(or the probability) of the input from the observed output of the
system.

In particular, total probability theorem deals with the calcula-
tion of the output probabilities P (Aj):

P (Aj) =
∑
i

P (Aj ∩Bi) =
∑
i

P (Aj |Bi )P (Bi).

Bayes’ theorem calculates the probability that Bk was the input
event when the observer can only observe the output of the system
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and the observed value of the output is Aj:

P (Bk |Aj ) =
P (Aj ∩Bk)

P (Aj)
=

P (Aj |Bk )P (Bk)∑
i

P (Aj |Bi )P (Bi)
.

Example 3.22. In the early 1990s, a leading Swedish tabloid
tried to create an uproar with the headline “Your ticket is thrown
away!”. This was in reference to the popular Swedish TV show
“Bingolotto” where people bought lottery tickets and mailed them
to the show. The host then, in live broadcast, drew one ticket from
a large mailbag and announced a winner. Some observant reporter
noticed that the bag contained only a small fraction of the hun-
dreds of thousands tickets that were mailed. Thus the conclusion:
Your ticket has most likely been thrown away!

Let us solve this quickly. Just to have some numbers, let us
say that there are a total of N = 100, 000 tickets and that n =
1, 000 of them are chosen at random to be in the final drawing.
If the drawing was from all tickets, your chance to win would
be 1/N = 1/100, 000. The way it is actually done, you need to
both survive the first drawing to get your ticket into the bag and
then get your ticket drawn from the bag. The probability to get
your entry into the bag is n/N = 1, 000/100, 000. The conditional
probability to be drawn from the bag, given that your entry is in
it, is 1/n = 1/1, 000. Multiply to get 1/N = 1/100, 000 once more.
There were no riots in the streets. [6, p 22]

3.23. Chain rule of conditional probability [1, p 58]:

P (A ∩B|C) = P (B|C)P (A|B ∩ C).
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3.2 Event-based Independence

Plenty of random things happen in the world all the time, most of
which have nothing to do with one another. If you toss a coin and
I roll a dice, the probability that you get heads is 1/2 regardless of
the outcome of my dice. Events that are unrelated to each other
in this way are called independent.

Definition 3.24. Two events A, B are called (statistically15)
independent if

P (A ∩B) = P (A)P (B) (5)

• Notation: A |= B

• Read “A and B are independent” or “A is independent of B”

• We call (5) the multiplication rule for probabilities.

• If two events are not independent, they are dependent. In-
tuitively, if two events are dependent, the probability of one
changes with the knowledge of whether the other has oc-
curred.

3.25. Intuition: Again, here is how you should think about inde-
pendent events: “If one event has occurred, the probability of the
other does not change.”

P (A|B) = P (A) and P (B|A) = P (B). (6)

In other words, “the unconditional and the conditional probabil-
ities are the same”. We can almost use (6) as the definitions for
independence. This is what we mentioned in 3.5. However, we use
(5) instead because it (1) also works with events whose probabili-
ties are zero and (2) also has clear symmetry in the expression (so
that A |= B and B |= A can clearly be seen as the same). In fact,
in 3.29, we show how (6) can be used to define independence with
extra condition that deals with the case when zero probability is
involved.

15Sometimes our definition for independence above does not agree with the everyday-
language use of the word “independence”. Hence, many authors use the term “statistically
independence” to distinguish it from other definitions.
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Example 3.26. [8, Ex. 5.4] Which of the following pairs of events
are independent?

(a) The card is a club, and the card is black.

Example: Club & Black

1

spades

clubs

hearts

diamonds

Figure 2: A Deck of Cards

(b) The card is a king, and the card is black.

3.27. An event with probability 0 or 1 is independent of any event
(including itself).

• In particular, ∅ and Ω are independent of any events.

3.28. An event A is independent of itself if and only if P (A) is 0
or 1.

3.29. Two events A, B with positive probabilities are independent
if and only if P (B |A) = P (B), which is equivalent to P (A |B ) =
P (A).

When A and/or B has zero probability, A and B are automat-
ically independent.

3.30. When A and B have nonzero probabilities, the following
statements are equivalent:
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3.31. The following four statements are equivalent:

A |= B, A |= Bc, Ac |= B, Ac |= Bc.

Example 3.32. If P (A|B) = 0.4, P (B) = 0.8, and P (A) = 0.5,
are the events A and B independent? [5]

3.33. Keep in mind that independent and disjoint are not
synonyms. In some contexts these words can have similar mean-
ings, but this is not the case in probability.

• If two events cannot occur at the same time (they are disjoint),
are they independent? At first you might think so. After all,
they have nothing to do with each other, right? Wrong! They
have a lot to do with each other. If one has occurred, we know
for certain that the other cannot occur. [6, p 12]

• To check whether A and B are disjoint, you only need to
look at the sets themselves and see whether they have shared
element(s). This can be answered without knowing probabil-
ities.

To check whether A and B are independent, you need to look
at the probabilities P (A), P (B), and P (A ∩B).

• Reminder: If events A and B are disjoint, you calculate the
probability of the union A ∪ B by adding the probabilities
of A and B. For independent events A and B you calculate
the probability of the intersection A ∩ B by multiplying the
probabilities of A and B.
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• The two statements A ⊥ B and A |= B can occur simultane-
ously only when P (A) = 0 and/or P (B) = 0.

◦ Reverse is not true in general.

Example 3.34. Experiment of flipping a fair coin twice. Ω =
{HH,HT, TH, TT}. Define event A to be the event that the first
flip gives a H; that is A = {HH,HT}. Event B is the event that
the second flip gives a H; that is B = {HH,TH}. Note that even
though the events A and B are not disjoint, they are independent.

Example 3.35 (Slides). Prosecutor’s fallacy [4, 118–119] and
[6, 22–23].

Definition 3.36. Three events A1, A2, A3 are independent if and
only if

P (A1 ∩ A2) = P (A1)P (A2)

P (A1 ∩ A3) = P (A1)P (A3)

P (A2 ∩ A3) = P (A2)P (A3)

P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3)

Remarks :

(a) When the first three equations hold, we say that the three
events are pairwise independent.

(b) We may use the term “mutually independence” to further
emphasize that we have “independence” instead of “pairwise
independence”.
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Definition 3.37. The events A1, A2, . . . , An are independent if
and only if for any subcollection Ai1, Ai2, . . . , Aik,

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = P (Ai1)× P (Ai2)× · · · × P (Ain) .

• Note that part of the requirement is that

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)× P (A2)× · · · × P (An) .

Therefore, if someone tells us that the events A1, A2, . . . , An

are independent, then one of the properties that we can con-
clude is that

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)× P (A2)× · · · × P (An) .

• Equivalently, this is the same as the requirement that

P

⋂
j∈J

Aj

 =
∏
j∈J

P (Aj) ∀J ⊂ [n] and |J | ≥ 2

• Note that the case when j = 1 automatically holds. The case
when j = 0 can be regarded as the ∅ event case, which is also
trivially true.

3.38. Four events A,B,C,D are pairwise independent if and
only if they satisfy the following six conditions:

P (A ∩B) = P (A)P (B),

P (A ∩ C) = P (A)P (C),

P (A ∩D) = P (A)P (D),

P (B ∩ C) = P (B)P (C),

P (B ∩D) = P (B)P (D), and

P (C ∩D) = P (C)P (D).

They are independent if and only if they are pairwise independent
(satisfy the six conditions above) and also satisfy the following five
more conditions:

P (B ∩ C ∩D) = P (B)P (C)P (D),

P (A ∩ C ∩D) = P (A)P (C)P (D),

P (A ∩B ∩D) = P (A)P (B)P (D),

P (A ∩B ∩ C) = P (A)P (B)P (C), and

P (A ∩B ∩ C ∩D) = P (A)P (B)P (C)P (D).
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3.3 Bernoulli Trials

Example 3.39. Consider the following random experiments

(a) Flip a coin 10 times. We are interested in the number of heads
obtained.

(b) Of all bits transmitted through a digital transmission channel,
10% are received in error. We are interested in the number of
bits in error in the next five bits transmitted.

(c) A multiple-choice test contains 10 questions, each with four
choices, and you guess at each question. We are interested in
the number of questions answered correctly.

These examples illustrate that a general probability model that
includes these experiments as particular cases would be very useful.

Example 3.40. Each of the random experiments in Example 3.39
can be thought of as consisting of a series of repeated, random
trials. In all cases, we are interested in the number of trials that
meet a specified criterion. The outcome from each trial either
meets the criterion or it does not; consequently, each trial can be
summarized as resulting in either a success or a failure.

Definition 3.41. A Bernoulli trial involves performing an ex-
periment once and noting whether a particular event A occurs.

The outcome of the Bernoulli trial is said to be

(a) a “success” if A occurs and

(b) a “failure” otherwise.

We may view the outcome of a single Bernoulli trial as the out-
come of a toss of an unfair coin for which the probability of heads
(success) is p = P (A) and the probability of tails (failure) is 1− p.

• The labeling (“success” and “failure”) is not meant to be lit-
eral and sometimes has nothing to do with the everyday mean-
ing of the words. We can just as well use A and B or 0 and
1.
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Example 3.42. Examples of Bernoulli trials: Flipping a coin,
deciding to vote for candidate A or candidate B, giving birth to
a boy or girl, buying or not buying a product, being cured or not
being cured, even dying or living are examples of Bernoulli trials.

• Actions that have multiple outcomes can also be modeled as
Bernoulli trials if the question you are asking can be phrased
in a way that has a yes or no answer, such as “Did the dice
land on the number 4?” or “Is there any ice left on the North
Pole?”

Definition 3.43. (Independent) Bernoulli Trials = a Bernoulli
trial that is repeated many times.

(a) It is usually assumed that the trials are independent. This
implies that the outcome from one trial has no effect on the
outcome to be obtained from any other trial.

(b) Furthermore, it is often reasonable to assume that the prob-
ability of a success in each trial is constant.

An outcome of the complete experiment is a sequence of suc-
cesses and failures which can be denoted by a sequence of ones
and zeroes.

Example 3.44. If we toss unfair coin n times, we obtain the
space Ω = {H,T}n consisting of 2n elements of the form (ω1, ω2, . . . , ωn)
where ωi = H or T.

Example 3.45. What is the probability of two failures and three
successes in five Bernoulli trials with success probability p.

We observe that the outcomes with three successes in five trials
are 11100, 11010, 11001, 10110, 10101, 10011, 01110, 01101, 01011,
and 00111. We note that the probability of each outcome is a
product of five probabilities, each related to one Bernoulli trial.
In outcomes with three successes, three of the probabilities are p
and the other two are 1 − p. Therefore, each outcome with three
successes has probability (1− p)2p3. There are 10 of them. Hence,
the total probability is 10(1− p)2p3
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3.46. The probability of exactly n1 success in n = n0+n1 bernoulli
trials is (

n

n1

)
(1− p)n−n1pn1 =

(
n

n0

)
(1− p)n0pn−n0.

Example 3.47. At least one occurrence of a 1-in-n-chance event
in n repeated trials:

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3
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1

n

n Bernoulli trials

1

 Assume success probability = 1/n

 #successes 1P 

 #successes 1P 

 #successes 0P 
 #successes 2P 

 #successes 3P 

1
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1
1 0.6321

e
 

1
0.1839

2e


Figure 3: A 1-in-n-chance event in n repeated Bernoulli trials
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